Privacy-preserving Wi-Fi Analytics Barcelona, Spain PETS 2018

Mohammad Alaggan* Mathieu Cunche[†] Sébastien Gambs[‡]

* Antidot, France (Work done while at Inria Lyon, France)
[†] Univ Lyon, Inria, France
[‡] Université du Québec à Montréal, Canada
mohammad.nabil.h@gmail.com

July 25, 2018

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

July 25, 2018 1

Sac

イロト イロト イヨト

Context

Our Approach

Background

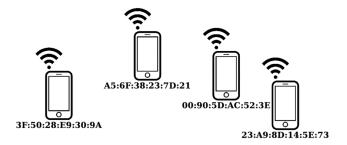
Pan-private BLIP and Cardinality Set Operations

Experimental Results

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

July 25, 2018 2


э

990

< = > < = > < = > < = >

Wi-Fi devices as personal beacons

- ► Wi-Fi enabled devices broadcast a unique ID: the MAC address
 - Connected: in Data, Management and Control Frames
 - Disconnected: in probe-requests (Management) Frames

Physical Analytics

- ► Objective: Measure and analyse human activity through Wi-Fi
 - One MAC address = One person
- Examples of analystics tasks:
 - Number of visitors
 - Duration/frequency of visits
 - Most popular paths between different locations

▶ ...

source : Libelium

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

July 25, 2018 3

Sar

Current industrial practices for protecting privacy are not good enough

- Most of the companies rely on hashing to prevent the re-identification of the MAC address
- ► Hashes can be reversed in minutes using brute-force attack [DCL'14]

Time	Location	MAC
12:09	A-4	00:11:11:11:11:11
12:12	B-4	00:11:11:11:11:11
12:13	E-5	00:22:22:22:22:22
12:13	F-4	00:33:33:33:33:33
12:14	B-4	00:11:11:11:11:11

-	Time	Location	Hash (md5)	
	12:09	A-4	fb2d5084c0ad1fdf6c29fe2aa323b758	
	12:12	B-4	fb2d5084c0ad1fdf6c29fe2aa323b758	
\rightarrow	12:13	E-5	69dc015b56448651561e1a4301ac9b4d	
	12:13	F-4	07024831442e8b86a06e905fd4d391ce	
[12:14	B-4	fb2d5084c0ad1fdf6c29fe2aa323b758	

< ロト < 同ト < 三ト < 三ト

[DCL'14] L. Demir, M. Cunche, and C. Lauradoux. Analysing the privacy policies of Wi-Fi trackers, WPA'14

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

July 25, 2018 4

Context

Our Approach

Background

Pan-private BLIP and Cardinality Set Operations

Experimental Results

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

July 25, 2018 5

э

990

< = > < = > < = > < = >

Threat model (Pan-Privacy [DNPRY'10])

- ► Attacker: internal actor (data collector) or external intruder
- Resource to protect: internal state of the system and the final output
- ▶ Protection must be done on-the-fly, as each MAC address is observed

C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-Private Streaming Algorithms. ICS'10

Sar

Pan-Privacy

Pan Privacy (informal and simplified) [DNPRY'10]

An algorithm is ε -differentially pan-private if the distribution of **both**:

- ► The internal state of the algorithm
- ► The final output

does not differ too much (depending on ε) if one MAC address was added

Intention: from the internal state of the system and the output, the adversary cannot distinguish whether or not the MAC address of the user is present in the encoded set

[DNPRY'10] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-Private Streaming Algorithms. ICS'10

< ロト < 同ト < 三ト < 三ト

Approach

Observation

Many mobility analytics can be based upon a primitive: Cardinality Set Operations (Also known as Count-Distinct Queries) between different locations at different times

Example (Mobility Analytics)

	Temporal	Spatial	Set Operation
Number of visitors			Cardinality
Number of visitors		\checkmark	Union
Amout of time they spend	\checkmark		Intersection
Frequency of their visits	\checkmark		Intersection
Their movement trajectories	\checkmark	\checkmark	Intersection
Most frequently taken path	\checkmark	\checkmark	Intersection

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

Our Approach

- Key idea: design a privacy-preserving data structure for computing the Cardinality Set Operations while protecting the privacy of individual users
- Agnostic to data source (not limited to Wi-Fi)
 - Cellular-based mobility analytics (Call-Detail-Records) ¹
 - Web analytics
 - Any system with unique identifiers...
- Designed data structure: based on Bloom filters that are perturbed to ensure differential privacy and built on the fly to ensure pan-privacy.
- ► Non-interactive: create the data structures first, specify the mobility analytics to compute later
- **Decentralized**: No need to coordinate between sensors

Alaggan, Cunche, Gambs

Context

Our Approach

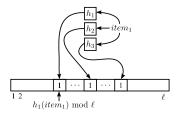
Background

Pan-private BLIP and Cardinality Set Operations

Experimental Results

Alaggan, Cunche, Gambs

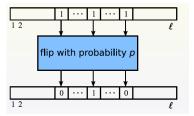
Privacy-preserving Wi-Fi Analytics


July 25, 2018 9

э

イロト イポト イヨト イヨト

Bloom Filters [Bloom 1970]


Sets can be represented as Bloom filters

- Two operations: insert and contains
- Highly efficient in space and time
- Small probability of false positives, no false negatives
- Can add but cannot remove elements
- ► Not private: can be exhaustively queried

BLIP [AGK 12]

- Bloom Filter with Differential Privacy guarantees
- ▶ $\mathsf{BLIP} = \mathsf{BLoom}\text{-then-fIIP}$
 - ▶ Step 1: Represent a set of identifiers as a Bloom filter
 - ► Step 2: flip each bit indepdendently and identically at random with probability p < 0.5.</p>

Estimator for distinct number of stored identifiers [BFG'14]

[BFG'14] Balu R., Furon T., Gambs S., Challenging differential privacy: the case of non-interactive mechanisms. In ESORICS 2014

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

July 25, 2018 10

Sac

Pan-private BLIP and Cardinality Set Operations

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

3 July 25, 2018 11

< ロト < 同ト < 三ト < 三ト

Sac

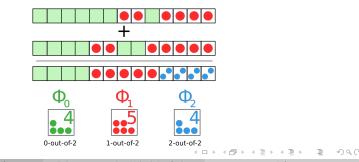
Pan-Private BLIPs

• Choose two Bernoulli distributions, $D_0 \neq D_1$, according to ε

Pan-Private BLIP: Initialize

• Initialize all bits randomly from D_0

Pan-Private BLIP: Add element x

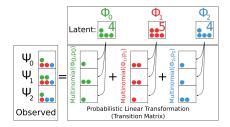

• Set bits $h_1(x), h_2(x), \ldots, h_k(x)$ randomly from D_1

Alaggan, Cunche, Gambs

Distinct-Count Queries for n BLIPs

Example (1/2): Plain (unflipped) Bloom filters

- ► Given two **unflipped** Bloom filters of size *m*
- Add them component-wise (over the integers)
- Tally the components
- Intersection \approx 4 (number of components of count 2)
- Union \approx 9 (number of components of count \geq 1)



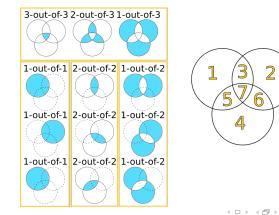
Privacy-preserving Wi-Fi Analytics

Distinct-Count Queries for n BLIPs

Example (2/2) : Pan-Private BLILPs

- Given two **flipped** Bloom filters of size m
- ► Add them component-wise (over the integers)
- Tally the components
- Estimate the unflipped tally [ACM 17]

Sac


 $\exists \rightarrow$

Distinct-Count Queries for n BLIPs

The general case: Symmetric Counts (t-out-n counts)

Number of elements belonging to exactly t sets out of n

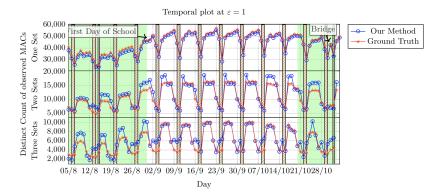
Can estimate any count from several symmetric counts

Alaggan, Cunche, Gambs

Sar

Experimental Results

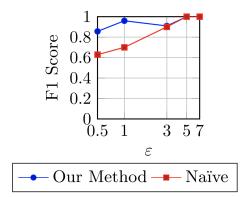
Alaggan, Cunche, Gambs


Privacy-preserving Wi-Fi Analytics

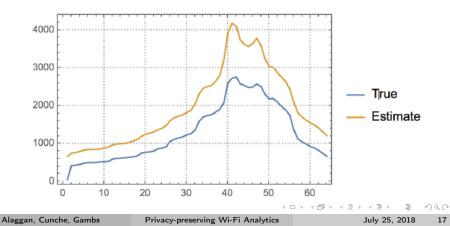
3 July 25, 2018 15

イロト イポト イヨト イヨト

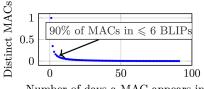
Temporal Patterns


- ► Wi-Fi Dataset provided by CISCO of a large European city
- ► 1.4 million devices, 91 days
- ► Evaluation using BLIPs, 1 BLIP per day

4 A b


Spatial Patterns

- ► Top-10 origin-destination pair
- F1 score is 1 when two sets are identical and 0 if they share no elements at all


Temporal patterns (World cup dataset)

- ► HTTP request dataset for the FIFA World Cup 1998 website.
- ► 2.8 million unique IPs, 88 days.
- Evaluation using BLIPs, 1 BLIP per day ($\epsilon = 3$; $m = 2^{18}$)
- Estimating the intersection of a rolling window of 30 days

Managing the privacy budget

- Fundamental issue of a privacy budget: the more a user appears in several BLIPs, the more his privacy budget is impacted \Rightarrow increase of risk of re-identification for a user.
- ▶ In practice, more than 90% of users do not appear in more than 6 BLIPs in the CISCO dataset
- How to mitigate the impact:
- Could change spatial or temporal granularity (make it more coarse)
- Regular change of hash functions (prevent inferences between BLIPs based on different hash functions) not a silver bullet

Number of days a MAC appears in

< ∃ >

18 h

Context

Our Approach

Background

Pan-private BLIP and Cardinality Set Operations

Experimental Results

Conclusion

Alaggan, Cunche, Gambs

Privacy-preserving Wi-Fi Analytics

July 25, 2018 19

3

990

< = > < = > < = > < = >

Conclusion and Future Work

- Privacy-friendly wifi analytics: accurate patterns + privcay of individuals
- Pan-privacy: Privacy is preserved even if attacker gains full access to stored data
- ► BLIPs: Versatile building block for set operations
- We provide error bounds which can be of independent interest for analysis of hashing collisions
- Promising experimental evaluations
- Challenge: parameter tuning trade-off (ε , Bloom filter size)
 - Cardinalities are not known in advance
- Future work: Designing practical inference attacks
- Future work: More complex physical analysis tasks, e.g. traffic forecast, anomaly detection, point-to-point travel time, or urban network characterization

Alaggan, Cunche, Gambs

Sar

< ロト < 同ト < 三ト < 三ト

Thank You!

990

<ロト < 四ト < 三ト < 三ト